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This paper presents the Euler}Newton formulation of oscillatory behaviour of
multi-body systems interconnected by spring elements with three orthoganal
sti!nesses and dampers and introduces the application of a genetic algorithm (GA)
as an optimization tool to the problem of vibration synthesis. The state variables of
the problem space are the mounting parameters such as two end positions,
sti!nesses and angular orientation. It is demonstrated in the paper that in
optimizing the vibratory characteristics of a system, the redundancy of variables
does not cause a serious problem for the genetic algorithm. Furthermore, due to its
#exibility, the algorithm imposes little restriction in the selection of the objective
function.

( 2000 Academic Press
1. INTRODUCTION

A number of di!erent techniques have been developed in the past for modal
synthesis of dynamic systems. The theme of most of the recent research work such
as references [1}3] has been to use some form of iterative technique to modify the
system dynamic characteristics. Kundra and Nakra [4] considered the e!ect of
modifying sti!ness and mass matrices in order to achieve the desired dynamics
characteristics of the system. Wang [5] subsequently adopted a re-analysis
formulation for optimization of dynamic behaviour.

This paper presents the general formulation of a general multi-body system
#exibly supported by linear mountings and uses a genetic algorithm to optimize the
systems vibratory behaviour. The methods proposed in this paper are extensively
used in the VIBRATIO suite of vibration analysis software developed by Esat [6, 7]
since 1985. A genetic algorithm is used to select a general objective function for
dynamic synthesis of structures. Only a brief description of the theory of the genetic
0022-460X/00/090933#16 $30.00/0 ( 2000 Academic Press



934 I. I. ESAT AND H. BAHAI
algorithm is given in this paper as it is by now a well-established optimization
technique which was initially proposed by Holland [8] and later developed and
documented by others such as Goldberg [9] and DeJong [10].

Two types of optimization problems are considered. The "rst problem involves
reducing overall coupling of oscillation between selected directions. For this, the
objective function is constructed from summation of all the non-diagonal terms of
the global sti!ness matrix. The formulation developed for decoupling could be used
for selected modes of oscillation. In this case the objective function is constructed
from the selected elements of the sti!ness matrix. The second problem investigated
involves reducing the amplitude of oscillation at a selected position on the system.
This is a common problem where the oscillating mass is connected to the outside
world through a connecting element. For example, an engine}gearbox connected to
a drive-line through the universal joint. The genetic algorithm is successfully tested
for both problems.

1.1. GENETIC ALGORITHM

Holland, [8] developed the genetic algorithm (GA) at the University of
Michigan. In simple terms the algorithm represents a search strategy based on the
mechanics of natural selection and reproduction in biological systems. In the
genetic algorithm, like any other optimization technique, only those variables
which have contributed to the objective function are identi"ed. These variables are
coded into strings (patterns) also known as chromosomes. Each pattern has
a survival value or value of "tness which determines its e!ectiveness in the &&survival
of the "ttest'' gene, this is the value of the objective function due to the string. The
probabilistic selection which is biased according to the "tness values of string
produces the population for a &&mating pool''. Mating, which follows this, ensures
that a "tter generation of string is resulted. The biasing random selection according
to the level of "tness distinguishes the algorithm from methods based on random
walk techniques.

DeJong [10] studied the use of genetic algorithm in general function
optimization. He has shown that the ability of the GA to learn from the history and
exploit the environment provides the basis of its e!ectiveness in general
optimization. Exploitation of past experience does not feature in techniques based
on hill-climbing, local gradient and simulated annealing.

Another powerful tool in a genetic algorithm is the concept of Schemata.
A schema is a subset of chromosomes where some selected elements are common.
This gives great #exibility to the algorithm in terms of focusing the search to speci"c
area or emphasizing selected attributes.

The following steps form the bases of the genetic algorithm:

(A) The system variables are coded in a binary string.
(B) Randomly form an initial population of strings.
(C) Fitness values (value of objective function) are obtained for each string in the

population.
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(D) A number of strings are selected for mating. The selection process is biased
randomly. Biasing is according to the "tness values of strings. Along with the
strings selected, now new randomly created strings are added to the mating
pool.

(E) A percentage of strings are selected for CROSSOVER (60}80%) and
MUTATION (3}5%) from the mating pool. CROSSOVER is performed on the
pairs randomly selected from the mating pool. Similarly, a selected proportion of
the mating pool population is mutated. This selection is also random.

Crossover is the process whereby strings are randomly selected and the bits
(genes) are exchanged at a random location to create o!springs. For example, two
strings (1001 and 0011) crossed at bit 2 will give two new o!springs such as (0001
and 1011).

In mutation a bit is switched at a random site to include new search spaces, e.g.
1101 becomes 1100, the last bit switched.

A certain proportion of new strings may be added to the new generation of
o!springs. The new strings are created by random string generation.

With this population the algorithm may proceed to the next step. This process is
convergent [9]. These steps may be presented in a #ow diagram as shown in
Figure 1.

The following criteria stated by Goldberg [9] and Holland [8] should be met in
order to exploit full e$ciency of the genetic research.

(a) A gene should be represented with the smallest cardinality of alphabet.
(b) The genetic operators should produce legal solutions in each operation.
(c) The algorithm should be adaptive.

2. EQUATIONS OF MOTION OF MULTI-BODY SYSTEMS

2.1. DEFINITIONS AND ASSUMPTIONS

In formulating and assembling the equations of motion of multi-body systems
the following assumptions are made:

(A) It is generally assumed that a mounting (or spring) has zero length. This
assumption is acceptable since mountings are relatively small compared with
the body they support.

(B) Throughout the analysis it will be assumed that the sti!nesses of the springs in
their principal axes of de#ection remain uncoupled. Or in other words, a single
physical mounting can be represented by three individual springs in three
orthogonal directions.

(C) The amplitude of oscillation is small*no geometrical non-linearity is involved.
(D) Dynamic response characteristics of mountings either linear or non-linear are

not considered. The system as presented is capable of dealing with certain types
of non-linearity. Time-dependent e!ects are also excluded.

(E) Gyroscopic e!ects are assumed to be small.
(F) Damping is present in the system.



Figure 1. Flow diagram for simple genetic algorithm.
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2.2. FORMULATION AND ASSEMBLY OF EQUATIONS

To formulate the equations of motion of a multi-body system, interaction of at
least two bodies (Figure 2) should be considered. Let us assume that these bodies
are designated as i and j. P

i
and P

j
are two points on these bodies as shown in

Figure 2. In order to formulate the equations of motion, the internal forces acting



Figure 2. Bodies i and j connected by spring K
r
.
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on the individual bodies due to their motion relative to each other need to be
expressed.

Motion of the origin of axes system i which is "xed to the body i is given by
r
i
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i
, y

i
, z

i
), and angular rotation of the axes is given by a

i
"(a
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the motion of body j is described by r
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The combined translational and rotational motion of end points, (a
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), of the springs on each body, described in the axes of each body frame, is

given by
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where the relative displacement, d, is given by

d"d
j
!d

i
. (3)

Reaction forces due to relative displacement on each body, respectively, are given
by
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r
d, (4)

where k
r
is the sti!ness of spring number r between the two bodies.

The moments are given by
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The equations of motion for mass i can be written as
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. (6)

Now,
k
r
d
i
"k

r
(x

i
#a

i
]r

i
),

where a
j
"(a

j
, b

j
, c

j
) and x

i
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where i, j, k are orthogonal unit vectors.
The above cross product can be converted into matrix form:
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where Lk
ir

matrix is the matrix obtained for mass i by converting cross product
terms into matrix form, i.e.,

Lk
ir
"k

r
P.

Equation of motion of body i can therefore be written as
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where matrix Lk
jr

is obtained by using the position vector of spring r on mass j and
is obtained in a similar way to matrix Lk

ir
.

Equation of motion for body j can be written as
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Similarly, moment equation may be written as
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Cross products may be eliminated by a suitable matrix operation,
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where kk
ir

is the matrix resulting from conversion of cross product into matrix
form in a similar way to Lk

ir
.

Now d
i
and d

j
can be expanded as
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where again a conversion similar to that carried out in equation (7) is performed to
obtain the matrices

Lkk
iir

, Lkk
ijr

, Lkk
iir

and Lkk
jjr

.

The su$x i appearing in the matrix notation used in the above matrices implies
that the position vector of spring attached on mass i is used in obtaining that
matrix. Similary, j implies the same with respect to mass j. For example, Lkk

iir
is

obtained by performing the cross product r
i
]Lk

ir
and converting the result into

matrix form.
Assembling equations (8) and (12) into matrix form
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Similarly, equations (9) and (13) are assembled into
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The above equations can be expanded for the generalized multi-body system by
assembling the relevant sti!ness and mass terms in their appropriate matrix
locations.

3. OPTIMIZATION AND SELECTION OF AN OBJECTIVE FUNCTION

The generalized assembled equation of motion will form the equation of state for
the system optimization. Since the genetic algorithm places no speci"c restriction
on the objective function, the following possible objective functions may be selected
for vibration optimization problem:

(A) Objective function for minimizing overall energy transfer between selected
variables. In mathematical terms, this may be expressed as minimization of the
sum of all non-diagonal terms of the global sti!ness matrix. This objective
function cannot be solved with meaningful results unless an additional con-
straint is imposed on the problem. This is obvious since a trivial solution exists
when all the springs between bodies are removed and bodies are connected
only to the ground. It is important not to misinterpret modal decoupling as
a solution to this problem. In real life, the modal decoupling or expressing the
problem in principal co-ordinates may not have any physical interpretation.

(B) Minimizing coupling between two selected motions (between i and j) of
the multi-body system. This, in mathematical terms, may be expressed as



Figure 3. Minimizing the amplitude of oscillation at the universal joint on a drive shaft.
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minimization of the terms at the matrix positions ij and ji corresponding to the
rows of the equations of motion. The trivial solution described above (i.e.,
elimination of sti!ness elements between the selected motions of bodies) exists
for this objective function. However, there are practical solutions as well. For
example, it is known that "nding symmetry for mounting arrangement may
decouple translational motion from the rotational motion. Generally, in
industry, mounting arrangements are designed to ensure that their &&centre of
sti!ness'' coincides with the centre of mass. This method is sometimes known as
&&Remote Centre Compliance''. The method is applicable for single-body
systems, but its practical value is limited. For multi-body systems this method
becomes completely ine!ective.

(C) Minimizing amplitude of oscillation at a given frequency. This is the most
common engineering statement of vibration synthesis.

This may be expressed for the motion of a body in general as

minM (x#h
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where (x y z) is the co-ordinate of the centre of the origin of the axes of the system

(h
x

h
y

h
z
) is the angular rotation of the spring,

(r
x

r
y

r
z
) is the position of the endpoint of the spring.

This type of vibration isolation is required in order to minimize vibration
transfer from the body with vibration source and the frame or link connecting the
body to the rest of the system. As an example, in an engine set-up situation
vibration is transferred to the drive shaft system through a universal joint (UJ),
Figure 3. In this case, the objective would be to minimize the amplitude of
oscillation on the drive shaft.

3.1. ANALYSIS AND RESULTS

In order to formulate the optimization problem, the problem variables need to be
selected. It is assumed that the variables vary from an initial nominal value to
a maximum value by prescribed increments. To describe the levels of increments
a three-bit string is used, giving 7 levels of increments.
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The variables used in the synthesis are those that de"ne the mountings. There are
six co-ordinates, three at each end of the spring. If one end is "xed to the ground
then these are set to zero and the number of variables are reduced to three. The
other variables include spring sti!nesses in three orthogonal directions and three
Euler angles describing the orientation of the principal axes of the spring. The end
positions of the spring may give an indication of the orientation of the spring. In
practical situations this information is not used. It is generally assumed that springs
may take any orientation without any reference to its end positions. This is a valid
assumption since if the spring length is assumed to be zero the angular orientation
of springs will have no e!ect on the positions of its endpoints. The positions of the
ends of springs are measured relative to the body axes on which they are connected.
Therefore, they appear as two distinct vectors. When each end position vector
relative to it's respective body frame is added to the position vector of the centre of
axes of their respective bodies in the global frame then the result should be the
same. This is because spring lengths are taken to be zero. This assumption is used in
reducing the number of independent variables. If the centres of bodies are known
then springs may be described only in terms of a single vector relative to the centre
of mass of body giving its absolute position. It is su$cient to know the spring end
position relative to one of the bodies only. With reference to Figure 4, we therefore
have

r
gi
#r

ki
"r

gj
#r

kj
, (16a)

where r
gi

and r
gj

are the position vectors of the centre of gravity of masses i and
j respectively. r

ki
and r

kj
are the position vectors of the kth sti!ness on masses i and

j respectively.

3.1.1. Summary of the optimization problem

(a) Control variables

r
ki
, r

gi
, r

kj
, r

gj
(de"ned in Figure 4)

a
i
a
j

angular rotation of the body i and j axis respectively
Figure 4. Spring-con"guration.
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k
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spring sti!nesses in directions x, y and z respectively

r
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position vectors of the centre of gravity of bodies i and j respec-
tively

(b) Constraints
The following are the constraints of the problem:
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where r
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yl
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yu
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, r

zu
are the lower and upper limits of sti!nesses in the x,

y and z directions.
(c) Objective Functions
(i) For the case of minimization of selected cross coupling the objective function

is

J"min
4
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3
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.

(ii) For the case of minimization of the amplitude of oscillation the objective
function is
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3.1.2. An example run

An implementation of data format in the software suite VIBRATIO [6, 7] is
shown in Table 1.

Table 1 gives data fragment for a two-mass system. For the "rst example given
below, only mass number one is employed. For the second example both the bodies
are used. All the variables are assumed to have seven discrete levels or able to attain
eight possible values. The initial and increment values for each variable may be
adjusted. For both of the examples given below, the following numbering scheme is
used

Spring and the centre of gravity positions
x"500 mm binary 0 0 0 increment"100
x"1200 mm binary 1 1 1
y and z are also set in the same manner.



TABLE 1

A two-mass problem
Number of mounting sti!ness types"1

Mount no kx ky kz

1 10 30 70
GX G> GZ
0 0 0

MASS IXX I>> IZZ
1000 100 200 300

Constr IX> IXZ I>Z
0 0 0

Mount no X > Z ALPH BETA GAM TYPE
1 1000 1000 * 0 0 0 1

1000
2 1000 * * 0 0 0 1

1000 1000
3 * * * 0 0 0 1

1000 1000 1000
4 * 1000 * 0 0 0 1

1000 1000
GX G> GZ
0 0 1500

MASS IXX I>> IZZ
1200 90 150 200

Constr IX> IXZ I>Z
0 0 0

Mount no X > Z ALPH BETA GAM TYPE
1 1000 1000 * 0 0 0 1

1000
2 1000 * * 0 0 0 1

1000 1000
3 * * * 0 0 0 1

1000 1000 1000
4 * 1000 * 0 0 0 1

1000 1000

Note: kx, ky, kz, spring sti!nesses in the x, y and z local directions; IXX, I>>, IZZ moments
of inertia relative to the centres of gravity; IX>, IXZ, I>Z, cross moments of inertia
relative to the centre of gravity; ALPH, BETA, GAM, Euler angles (a, b, c); GX, G>, GZ,
gravitational acceleration in the x, y and z directions.

The heading &&type'' refers to spring de"nition. &&Option'' and &&constr'' are not relevant for
this.
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Sti+ness values
kx"1 kN binary 0 0 0 increment"10
kx"71 kN binary 1 1 1
ky and kz are set in the same manner.
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Euler angles
a"03 binary 0 0 0 increment"73
a"49 binary 1 1 1
b and g are set in the same manner.

3.1.2.1. Minimizing selected cross coupling. A one-mass problem. It is assumed
that mounting con"guration is described in terms of 36 variables, three positions,
three sti!nesses and three Euler angles for each of the four mountings. Each
variable is assumed to be de"ned in seven levels as described above, therefore each
binary number has three bits. Therefore, the total length of the binary string is 118
bits.

The objective function for this case is selected to be,

J"min
4
+
r/1

3
+
i/1

3
+
j/1

Lkk
ijr

. (16b)

The main cause of coupling in this problem is the mountings being away from the
centre of the mass (Figure 5). Therefore, an inertial force in O

x
or O

y
direction will

generate motion in a or b direction. By comparing the results of Tables 2 and 3 an
improved decoupling in y relative to b and x relative to a motion before and after
optimization can be seen.

3.1.2.2. Minimizing amplitude of oscillation at a point. ¹wo mass problem. The
data given in Table 1 is used in constructing the state vector of optimization. In this
case, the number of variables for each spring is the same as before but the system is
supported by eight springs and therefore 72 variables are required to describe all
the spring parameters. The system is shown in Figure 6. Another three variables are
needed to describe the centre of mass of body 2. Therefore, the problem requires 75
variables. In this case the length of the binary vector is reduced from 3 to 2. The
minimum values of variables and increments are the same as before.

In this case the objective function is selected to be,

J"minM (x
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#h

2y
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r
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r
y
!h

2y
r
x
)2N. (17)

In order to calculate the time-dependent variables appearing above, the system
equations should be solved. In general, the steady state solutions of the equations of
Figure 5. Single-mass problem.



TABLE 2

Single-mass problem before optimization

Relative eigenvector values for mass"1

X > Z ALPHA BETA GAMA

Frequency in X"0)94 Hz (56. CPM)
1)0000 0)0000 0)0000 0)0000 0)1278 0)0000

Frequency in >"1)45 Hz (87. CPM)
0)0000 1)0000 0)0000 !0)3064 0)0000 0)0000

Frequency in Z"2)66 Hz (160. CPM)
0)0000 0)0000 1)0000 0)0000 0)000 0)0000

Frequency in ALPHA"10)12 Hz (607. CPM)
0)0000 0)0306 0)0000 1)0000 0)0000 0)0000

Frequency in BETA"6)38 Hz (383. CPM)
0)0256 0)0000 0)0000 0)0000 !1)0000 0)0000

Frequency in GAMA"3)68 Hz (221. CPM)
0)0000 0)0000 !0)0001 0)0000 0)0000 1)0000

The parameters are the same as in Table 1.

TABLE 3

Single-mass problem after optimization

Relative eigenvector values for mass"1

X > Z ALPHA BETA GAMA

Frequency in X"1)00 Hz (60. CPM)
1)0000 0)0000 0)0000 0)0000 0)0435 0)0000

Frequency in >"1)71 Hz (103. CPM)
0)0000 1)0000 0)0000 !0)1289 0)0000 0)0000

Frequency in Z"2)66 Hz (160. CPM)
0)0000 0)0000 1)0000 0)0000 0)0000 0)0000

Frequency in ALPHA"8)59 Hz (516. CPM)
0)0000 0)0129 0)0000 1)0000 0)0000 0)0000

Frequency in BETA"6)00 Hz (360. CPM)
!0)0087 0)0000 0)0000 0)0000 1)0000 0)0000

Frequency in GAMA"3)68 Hz (221. CPM)
0)0000 0)0000 0)0000 0)0000 0)0000 1)0000

The parameters are the same as in Table 1.
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Figure 6. Two-mass problem.
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motion are to be minimized. The system equations under steady state sinusoidal
excitation is given as

MXG#CX0 #KX"F
1

sin ut#F
2

cos ut, (18)

where XG , X0 , X, are, respectively, the acceleration, velocity and displacement vectors
of the assembled equation of motion, F

1
and F

2
are vectors containing amplitudes

of the forcing exitation, M is the assembled mass matrix, C is the assembled
damping matrix, and K is the assembled sti!ness matrix, seeking a solution in the
following form:

X"A sin ut#B cos u t, (19)

where A and B are vectors containing amplitudes of the output displacement.
The steady state solution may be obtained in the matrix form as

C
(K!u2M) !uC

uC (K!Mu2)D G
A

BH"G
F
1

F
2
H, (20)

where A and B are the amplitudes of motion variables at frequency w. Therefore,
the objective function given above may be constructed from the selected elements of
A and B.

The response which is presented as a time domain solution before and after
optimization is given in Figures 7(a) and (b). These two examples are selected
arbitrarily. Forcing excitation and frequency are kept the same before and
after optimization but the two examples represent di!erent forcing and frequency
selections.

4. COMMENTS AND CONCLUSIONS

Some early results from our work on application of GA to vibration synthesis is
presented. The initial results of this investigation are encouraging. A possible
constraint in the application of the genetic algorithm to vibration synthesis can
occur if the objective function cannot be expressed functionally in terms of the



Figure 7. The time-domain solutions before and after optimization.
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optimization variables. This situation may arise if, for example, the design variables
are used in some commercial analysis package from which the objective function is
obtained. Here, GA is applied without any explicit information that the objective
function is really a function of the design variables. As the analysis was con"ned to
simple functions, it was ensured that a functional relationship existed between the
objective function and design variables.

The tests carried out in this investigation are mostly conclusive, although in some
situations the results are not easy to interpret. A distinct improvement is observed
in decoupling modes, demonstrated by eigenvalue analysis. The response analysis
carried out for two di!erent forcing functions gave less conclusive results. The "rst
example shown in Figure 7(a), demonstrates a clear reduction in amplitude. The
result obtained in the second example is not conclusive, the amplitude at the
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selected frequency, is clearly reduced but the overall response of the system which is
superimposed with another frequency has not been reduced in its maximum
amplitude. This is possibly due to rough discretization which was used in this
analysis. It is anticipated that a "ner sampling of the variables would lead to
improved results. In order to reduce the computation time it may also be possible
to reduce the number of variables by assuming reasonable values for some of the
variables and increasing the length of the binary vector for the rest of the variable.
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